Insulin releases Glut4 from static storage compartments into cycling endosomes and increases the rate constant for Glut4 exocytosis.

نویسندگان

  • Joseph M Muretta
  • Irina Romenskaia
  • Cynthia Corley Mastick
چکیده

In adipocytes, insulin triggers the redistribution of Glut4 from intracellular compartments to the plasma membrane. Two models have been proposed to explain the effect of insulin on Glut4 localization. In the first, termed dynamic exchange, Glut4 continually cycles between the plasma membrane and intracellular compartments in basal cells, and the major effect of insulin is through changes in the exocytic and endocytic rate constants, k(ex) and k(en). In the second model, termed static retention, Glut4 is packaged in specialized storage vesicles (GSVs) in basal cells and does not traffic through the plasma membrane or endosomes. Insulin triggers GSV exocytosis, increasing the amount of Glut4 in the actively cycling pool. Using a flow cytometry-based assay, we found that Glut4 is regulated by both static and dynamic retention mechanisms. In basal cells, 75-80% of the Glut4 is packaged in noncycling GSVs. Insulin increased the amount of Glut4 in the actively cycling pool 4-5-fold. Insulin also increased k(ex) in the cycling pool 3-fold. After insulin withdrawal, Glut4 is rapidly cleared from the plasma membrane (t((1/2)) of 20 min) by rapid adjustments in k(ex) and k(en) and recycled into static compartments. Complete recovery of the static pool required more than 3 h, however. We conclude that in fully differentiated confluent adipocytes, both the dynamic and static retention mechanisms are important for the regulation of plasma membrane Glut4 content. However, cell culture conditions affect Glut4 trafficking. For example, replating after differentiation inhibited the static retention of Glut4, which may explain differences in previous reports.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucose transporter 4: cycling, compartments and controversies.

Insulin promotes glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). In unstimulated cells, rapid endocytosis, slow exocytosis and dynamic or static retention cause GLUT4 to concentrate in early recycling endosomes, the trans-Golgi network and vesicle-associated protein 2-containing vesicles. The coordinated action of phosphatidylinositol 3-kinase effectors, pr...

متن کامل

Endocytosis, recycling, and regulated exocytosis of glucose transporter 4.

Glucose transporter 4 (GLUT4) is responsible for the uptake of glucose into muscle and adipose tissues. Under resting conditions, GLUT4 is dynamically retained through idle cycling among selective intracellular compartments, from whence it undergoes slow recycling to the plasma membrane (PM). This dynamic retention can be released by command from intracellular signals elicited by insulin and ot...

متن کامل

Insulin-regulated Glut4 translocation: membrane protein trafficking with six distinctive steps.

The trafficking kinetics of Glut4, the transferrin (Tf) receptor, and LRP1 were quantified in adipocytes and undifferentiated fibroblasts. Six steps were identified that determine steady state cell surface Glut4: (i) endocytosis, (ii) degradation, (iii) sorting, (iv) sequestration, (v) release, and (vi) tethering/docking/fusion. Endocytosis of Glut4 is 3 times slower than the Tf receptor in fib...

متن کامل

Insulin-regulated Aminopeptidase Is a Key Regulator of GLUT4 Trafficking by Controlling the Sorting of GLUT4 from Endosomes to Specialized Insulin-regulated Vesicles

Insulin stimulates glucose uptake by regulating translocation of the GLUT4 glucose transporter from intracellular compartments to the plasma membrane. In the absence of insulin GLUT4 is actively sequestered away from the general endosomes into GLUT4-specialized compartments, thereby controlling the amount of GLUT4 at the plasma membrane. Here, we investigated the role of the aminopeptidase IRAP...

متن کامل

Immunoelectron microscopic evidence that GLUT4 translocation explains the stimulation of glucose transport in isolated rat white adipose cells.

We used an improved cryosectioning technique in combination with quantitative immunoelectron microscopy to study GLUT4 compartments in isolated rat white adipose cells. We provide clear evidence that in unstimulated cells most of the GLUT4 localizes intracellularly to tubulovesicular structures clustered near small stacks of Golgi and endosomes, or scattered throughout the cytoplasm. This local...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 1  شماره 

صفحات  -

تاریخ انتشار 2008